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Abstract
For systems that self-assemble into finite-sized objects, it is sometimes convenient to compute
the thermodynamics for a small system where a single assembly can form. However, we show
that in the canonical ensemble the use of small systems can lead to significant finite-size effects
due to the suppression of concentration fluctuations. We introduce methods for estimating the
bulk yields from simulations of small systems and for following the convergence of yields with
system size, under the assumptions that the various species behave ideally.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Self-assembly of monomer units into structures with a
characteristic finite size is one of the central themes of
soft matter and biological physics, examples including the
formation of spherical micelles, virus capsids and other
protein complexes, and DNA duplexes and nanostructures.
Spherical micelles, which although not monodisperse do
have a typical finite size, have spawned a huge theoretical
and experimental literature [1–3], driven by the relevance to
biology and industry. Similarly, much work has been dedicated
to understanding virus capsid assembly, an important aspect
of viral reproduction [4–8]. It is often observed that capsids
will form in vitro from only their constituent proteins [9–12]
(without, for example, RNA/DNA or scaffolding proteins),
suggesting that the dominant physics in these cases is that
of self-assembling monomers. The details of monomer
association have also been seen to have a large effect on the
nature of protein complexes, in terms of optimizing assembly
and function as well as influencing their evolution [13–16].
Finally, the recent advances in DNA nanotechnology [17, 18]
are underpinned by an understanding of the hybridization of
DNA oligomers, the thermodynamics having been extensively
characterized by the groups of SantaLucia [19] and Zuker [20].

Increased computing power has made simulations of
coarse-grained models of these systems feasible. The aim

of these simulations is typically to elucidate the microscopic
assembly kinetics or free energy landscape of the model
system, details generally inaccessible in experiment. For
example, several coarse-grained models of DNA have been
proposed in recent years which have been used to study
duplex [21, 22], and nanostructure [23] formation, as well as
the operation of a simple nanomachine [24], and the gelation
of DNA dendrimers [25]. Furthermore, generic models of
proteins and virus capsids have been used to study the assembly
kinetics for larger monodisperse structures [26–31], with a
consensus that reversibility is a key factor in avoiding kinetic
trapping. Many coarse-grained models of surfactants have also
been proposed, with simulations often focusing on the micellar
size distribution and associated thermodynamics [32–39] and
with Pool and Bolhuis suggesting a novel autocatalytic
mechanism for micelle formation [40, 41].

An important aspect of such systems is their thermody-
namics, as it influences assembly dynamics and gives the most
direct link to experimental results. How to best obtain the
equilibrium thermodynamics from simulations of assembling
systems, however, is a significant open question and one that
has become more pressing as simulations of such systems
have become more common. If self-assembly occurs relatively
readily, the best approach is probably to directly simulate a
sufficiently large system where a number of the assembled
structures can simultaneously form. After equilibration has
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taken place, statistics can then be extracted for the frequency
with which clusters of various sizes are observed. For
example, such an approach has been used to characterize the
thermodynamics of micellization [37, 38].

It is not uncommon that such direct approaches are
problematic, however, because the presence of significant free
energy barriers to assembly makes equilibrium hard to achieve.
These difficult cases generally divide into those involving a
large number of simple monomers (e.g. capsid or micelle
assembly) or a small number of complicated monomers, as
with DNA.

In these cases, an obvious way to facilitate assembly
would be to use rare-event techniques, such as umbrella
sampling [42, 43], which usually require an order parameter
that can characterize the transition to the assembled state.
Usually it is relatively straightforward to conceive of order
parameters that can be used to describe the formation of a
single target structure, e.g. the number of correct base pairs
for assembly of a DNA duplex, or the number of particles in
the largest cluster for the assembly of capsid-like objects or
micelles. However, it is less clear how to develop an order
parameter that can be used to drive the formation of a large
number of target structures, and we are not aware of any such
studies in the literature that achieve this.

Therefore, an appealing approach to obtain the equilib-
rium thermodynamics would be to simulate the formation of
a single assembled structure, using say umbrella sampling,
and if the self-assembly is monodisperse, i.e. the assembled
structure has a specific size, to perform the simulation in
the canonical ensemble with exactly the right number of
particles to form one complete structure. But what would
be the errors with such an approach? Firstly, interactions
between the assembled structures are neglected. However,
this is often a relatively good approximation, because the
interactions between assembled structures are likely to be
mainly associated with excluded volume—any attractions are
usually weak compared to the forces associated with the
assembly itself–and assembly often occurs at relatively low
concentrations.

The second potential source of error is finite-size effects,
and these are the focus of the present paper. In particular, we
will show that these finite-size errors for simulations in the
canonical ensemble can be significant3, but also how they can
be corrected under the assumption that species behave ideally4,
which as we mentioned above is often a good approximation.
We will also examine how the assembly yields converge
towards the bulk values as the system size is increased,
highlighting how the speed of convergence can depend subtly
on the thermodynamic state point considered.

We should note that specific methods have been developed
to calculate the equilibrium thermodynamics of heterodimer
formation in the protein–ligand binding literature [44]. These
aim to estimate the partition function of bound and separated

3 We note there will also be finite-size errors associated with grand canonical
simulations if the system is restricted to form a single assembled structure.
4 We note that in [28] we did not apply these corrections when comparing
the thermodynamic yield from single target simulations to the bulk dynamical
yield. Nor is there any mention of corrections being applied to the DNA duplex
results in [21, 22].

molecules directly, and typical methods include calculating a
potential of mean force for a certain pathway between bound
and unbound structures, incorporating the effects of overall
translational degrees of freedom separately. These techniques,
which are optimized for problems of great computational
difficulty, lack the flexibility and simplicity of the approach
analysed here, in which nothing need be approximated or
assumed about the nature of bonding, and no pathway need
be imposed. Furthermore, they do not generalize well to
multicomponent assembly.

2. Dimer formation in the canonical ensemble

2.1. Heterodimer formation

We illustrate the physical cause of finite-size statistical
corrections by considering heterodimer formation—such
a system could correspond to protein binding or DNA
hybridization [21, 22]. We consider a simulation in a periodic
cell of volume v, containing one monomer of type ‘A’ and one
of type ‘B’. Assuming we have a criterion for defining a subset
of states as ‘bound’, our simulation will estimate the relative
probability with which bound (AB) and unbound (A,B) states
are observed in such a system:

� = probability (AB)

probability (A,B)
, (1)

with the fraction of bound pairs given by:

f1 = �/(1 +�). (2)

Naively, we might hope that f1 = f∞, the bulk equilibrium
bonding fraction at the same temperature and concentration.
Unfortunately, this is not the case, as although we match
the average concentration of a bulk system we do not match
concentration fluctuations (as shown in figure 1) in a small
volume of that system.

We can apply corrections using simple thermodynamic
arguments, if we assume that interactions between all particles
which are not in a dimer state are negligible. We consider
a system of volume Dv, with D an integer, with the same
average concentration as the system with D = 1. We define:

• ZAB and ZA,B as the partial partition functions of the
D = 1 system when confined to the relevant subset of
states. For future convenience, we define these quantities
using distinguishable statistics, although it does not matter
at this stage. We note that � = ZAB/ZA,B.

• N as the total number of particles of type A or B (here
N = D).

• Ni as the number of molecules of species i (in this case i
is A, B or AB).

• qi as the single particle partition function for species i ,
in the volume Dv, with the internal degrees of freedom
treated using indistinguishable statistics.

• μi as the chemical potential of species i .
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Figure 1. (a) Shows two different particles in a box of size v as
discussed. We now imagine doubling the volume to 2v whilst
doubling the number of particles, therefore maintaining the average
concentration, as shown in (b). For the purposes of analysis, we can
split our new volume in half with a dashed line as indicated. All
macrostates with one of each of A and B on either side of the dashed
line, such as (b), will provide the same statistics as the original
system. Macrostates such as those shown in (c), however, will have
different statistics: for instance, (c(iv)) necessarily has a binding
fraction of zero.

The μi are given by a standard result of statistical mechanics:

μi = −kBT
∂

∂Ni
ln

(
q Ni

i

Ni!
)

≈ −kBT ln

(
qi

Ni

)
, (3)

where the approximation becomes an equality in the
thermodynamic limit. In this limit, we can use the
standard equilibrium result

∑
i νiμi = 0, where νi are

the stoichiometric coefficients of the species in the reaction,
finding:

NAB

NA NB
= qAB

qAqB
. (4)

As each qi scales with the volume of the system, we have:

qAB = DZAB, (5)

qAqB = D2 ZA,B, (6)

which gives (using D = N):

[AB]
[A][B] = vZAB

ZA,B
= v� = K eq

AB. (7)

We note that the quantity v� is that which is generally directly
estimated in protein/ligand binding studies [44].

Substituting (1), (5) and (6) into (4) yields:

f∞
(1 − f∞)2

= � (8)

which has the solution

f∞ =
(

1 + 1

2�

)
−

√(
1 + 1

2�

)2

− 1. (9)

In this case, f∞ < f1 for all values of �, as is illustrated for
a model dimer-forming system in figure 2. It is also noticeable
that the transition is wider for the bulk system. The physical
causes of these two effects will be discussed at the end of
section 2.3.

Figure 2. Dimer yield for a system described by a two-state model
Z2/Z1,1 = exp(−�E/T +�S), with �E = 2 and �S = 15 in
reduced units, with the values chosen for illustrative convenience.
Plotted are the yield for a two-particle system and the bulk values at
the same average concentration for homodimers and heterodimers.

2.2. Heterodimer convergence

It is useful to consider how the bonding fraction converges to
the bulk result as the system size is increased from one cluster
to the thermodynamic limit. We consider a system of volume
Dv, calculating the fraction of dimers ( fD) as a function of �,
again neglecting interactions except dimer formation.

Consider the macrostate with b dimers formed (out of a
possible D). The partition functions of individual monomers
and dimers scale with the size of the system (D), and the
partition function of the system is the product of the individual
partition functions together with combinatorial factors. Using
ZAB and ZA,B as defined before, the partition function of a
macrostate with b dimers (using distinguishable statistics) is
given by:

Zb(D) = (DZAB)
b(D2 Z A,B)

D−b

b!
(

D!
(D − b)!

)2

, (10)

in which the combinatorial factor is obtained from the total
number of permutations of A and B (D!2) divided by the
permutations which exchange monomers for monomers ((D −
b!)2) or dimers for dimers (b!). We then divide by D!2 to make
our statistics indistinguishable, and find fD in the usual way,
using equation (1) to simplify:

fD =
∑D

b=1 b
(
�
D

)b( 1
(D−b)!

)2 1
b!∑D

b=0 D
(
�
D

)b( 1
(D−b)!

)2 1
b!

=
∑D

b=0 bZ ′
b∑D

b=0 DZ ′
b

. (11)

Plotting fD against D for � = 1.875 (figure 3(a)) we find
that the bonding fraction falls from 0.652 to a large D limit of
0.489, and behaves similarly for other values of �. We can
formally find this limit by noting that for any value of �, Z ′

b
is sharply peaked about its maximum bmode for large D. This
allows us to make the saddle point approximation, whereby we
assume that Z ′

b is Gaussian and therefore that f∞ = bmode/D
by symmetry. Maximizing ln Z ′

b, and employing Stirling’s
approximation, yields:

d ln Z ′
b

db
≈ ln

(
�

D

)
+ 2 ln(D − b)− ln(b), (12)
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Figure 3. (a) Heterodimer yield as a function of system size D, with
average concentration fixed. The ‘×’ symbols indicate results from
simulations of our DNA model that were capable of forming D DNA
duplexes five base pairs long, and the ‘+’ are the predictions of
equation (11) with � chosen to reproduce the D = 1 DNA result.
The solid line indicates f∞. The image in the bottom right shows a
duplex of five bases as represented by our coarse-grained DNA
model. The simulations of the model were performed in the
canonical ensemble using the Monte Carlo algorithm of Whitelam
and Geissler [45].

and hence
�(D − bmode)

2

Dbmode
= 1. (13)

Using bmode/D = f∞, we can see that equations (13) and (8)
are identical, as they should be.

The microscopic approach provides a simple mechanism
for evaluating the accuracy of the correction scheme in certain
cases. If it is possible to simulate the simultaneous formation
of two or more targets, one can compare the change in
dimer yield to the predictions of the microscopic approach,
and then extend to the thermodynamic limit if the agreement
is good. This is particularly useful if it is possible to
consider an example with the relevant model where the self-
assembly process is relatively simple. For example, we have
recently developed a coarse-grained model of DNA [24] in
which bases are represented by rigid nucleotides (inset in
figure 3). All interactions between strands, such as base
pairing and excluded volume, are truncated within distances
much shorter than the typical separation of unbound strands,
making the assumptions in deriving the corrections of the
previous sections reasonable. Simulating duplex formation
for short strands of about five bases in length is simple, and
simulations forming several targets can be performed. The
results are plotted in figure 3, showing perfect agreement with
equation (11). Longer duplexes and complicated branched
structures are much more challenging to simulate, meaning that
only single target simulations are feasible. From the fact that
the correction is successful for shorter duplexes, however, we
can be confident that it will apply to longer strands when the
concentration of DNA bases is similar.

2.3. Homodimer formation

It is instructive to consider the differences between homodimer
and heterodimer corrections. For homodimers formed from
two particles of type ‘A’, we obtain the following expressions

Figure 4. (a) Shows two identical particles in a box of size v. We
now imagine doubling the volume to 2v whilst doubling the number
of particles, therefore maintaining the average concentration, as
shown in (b). For the purposes of analysis, we can split our new
volume in half with a dashed line as indicated. All macrostates with
two particles on either side of the dashed line, such as (b), will
provide the same statistics as the original system. Macrostates shown
in (c), however, will have different statistics.

for the partition function of each particle species:

q2A = DZA2

2
. (14)

qAqA = D2 ZA,A, (15)

where the factor of two compensates for the overcounting of
indistinguishable states in ZA2. Proceeding as in section 2.1,
we obtain: [A2]

[A]2
= vZA2

2ZA,A
= v�

2
= K eq

A2
. (16)

The bound fraction in the thermodynamic limit follows as:

f∞ =
(

1 + 1

4�

)
−

√(
1 + 1

4�

)2

− 1. (17)

The behaviour of the correction is significantly different from
that of heterodimers, as shown in figure 2. In this case,
the midpoint of the transition is unchanged, but the width
is noticeably larger in bulk than for the two-particle system,
i.e. f∞ > f1 for f1 <

1
2 , and f∞ < f1 for f1 >

1
2 .

The physical mechanism for the broadening of the
transition can be understood by considering the effect of
concentration fluctuations. Figure 4(c) shows the states of a
four-particle system which cannot be sampled in a two-particle
simulation. Of these, (c(i)) shows the smallest fluctuation in
concentration, with three of the particles occupying half the
volume and the remainder containing only one. In this case,
it is impossible to have a binding fraction of unity. A binding
fraction of zero is also less likely than in the two-particle case
as the three monomers occupying the ‘right’ half of the system
have a higher probability of forming one dimer than the two
particles did in the original system. As a consequence, the
fraction of dimers is pushed towards a half as the system grows
in size, because larger concentration fluctuations are allowed
which in turn favour the less probable configuration (whether
dimer or monomer), leading to a broader transition in bulk.

The same argument can be applied to heterodimers, but
with an important distinction. In this case, concentrations of
individual species A and B can fluctuate in addition to the
total concentration. Unlike total concentration fluctuations,

4
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fluctuations in the relative concentrations of A and B will
always reduce the probability of forming dimers, because of
configurations like that in figure 1(c(iv)) where no dimers can
be formed. As a consequence the heterodimer yield is lower in
bulk than for a two-particle system, as well as having a broader
transition.

3. Monodisperse large homoclusters

We now consider the formation of clusters of a specific
size, a case relevant to the assembly of virus capsid-like
objects [26–31], and homomeric protein complexes [16]. If
the formation of a single cluster is simulated in the canonical
ensemble, once again, the statistics of the various cluster sizes
do not directly correspond to bulk properties, but under the
assumption that interactions which do not constitute bonding
are negligible it is possible to extrapolate to large system sizes.
For simplicity we consider clusters of identical monomers,
although the analysis can be extended beyond this. Firstly, we
add some definitions:

• n is the number of monomers needed to form the target,
equal to the number of monomers simulated.

• zi is the partition function for species i (a cluster of i
identical monomers), in the simulation volume v, with the
internal degrees of freedom treated distinguishably.

• Zi, j,k... is the partition function of a system of volume v
when in a state which contains one molecule of species i ,
one of species j etc. This partition function is calculated
using distinguishable statistics.

• Z(n) is the total partition function of the n-particle system
in a volume v, calculated using distinguishable statistics.

• As all monomers are identical, the ‘A’ index will be
omitted for clarity.

The thermodynamically relevant quantities are the qi ,
because given these it is a simple task to calculate the bulk
concentrations of each species using:

Ni

(N1)i
= qi

(q1)i
(18)

and ∑
i

i Ni = nD = N. (19)

The quantities which are directly accessible from
simulation are Zi, j,k.../Z . Exactly how these can be accessed
depends on how the system is sampled. A sensible choice,
however, is to sample states by the largest cluster size—this
neatly divides the partition function Z into n parts, and we
label these subdivisions �i . We now have n equations, one
for each �i :

�i

Z
=

∑
j,k...

Zi, j,k...

Z
, (20)

where the summation over j, k . . . is the sum over all sets of
indices such that j, k . . . � i and the indices sum to n. We can
now begin substituting for Zi, j,k...:

Zi, j,k... = n!
( ∏

l=i, j,k...

zl

l!
) (

i∏
m

1

Cm !

)
, (21)

in which Cm is the number of indices in the set i, j, k . . . with
the same value as m.

We now have n simultaneous equations for zi/Z i/n in
terms of our measured quantities �i/Z . In addition, these
simultaneous equations have already been decoupled as each
�i/Z expression contains only zm with m � i , and thus finding
zi/Z i/n amounts to solving a polynomial of order i . All that
remains is to find qi in terms of zi . This is reasonably simple:

qi = D
zi

i ! , (22)

where in dividing by i ! we account for the reduction in states
imposed by indistinguishability. We can then obtain the right-
hand side of equation (18) by:

qi

(q1)i
= Dzi

i !(Dz1)i
= Dzi/Z i/n

i !(Dz1/Z 1/n)i
, (23)

in which the right-hand side is expressed in terms of the known
quantities zi/Z i/n . We can now eliminate our arbitrary large
factor D by converting to concentrations (which equates to
multiplying both sides by (Dv)(i−1)), giving:

[Ai ]
[A]i

= vi−1 zi/Z i/n

i !(z1/Z 1/n)i
. (24)

Once again, the system of equations can be closed by
conserving total monomer number:

∑
i

i [Ai] = n/v. (25)

To illustrate the form of the finite-size corrections, we
consider the artificial example of completely cooperative
hexamer formation (in which we approximate clusters
of intermediate size as having zero probability). The
complicating effects of additional states will be discussed in
section 4. For comparison with section 2.3, we will assume
the small system can be described by an equivalent two-state
model, so that the yields of hexamers and homodimers are
identical in the small simulation volume:

Z6/Z1,1,1,1,1,1 = exp(−�E/T +�S), (26)

with �E = 2 and �S = 15 in reduced units. The
result, plotted in figure 5, indicates once again a much
broader transition in the bulk case, this time with a slightly
adjusted midpoint. Furthermore, this broadening is much more
pronounced for hexamers than dimers. This trend is a general
one, with larger clusters experiencing greater broadening due
to finite-size corrections than dimers, because smaller relative
concentration fluctuations are required to push the system
towards a yield of approximately 50%, as illustrated in figure 6.

4. Homocluster convergence

Many canonical simulations of self-assembly are performed
using systems large enough to form several or many
clusters [26–31, 46]. We apply the formalism of the previous
sections to explore the convergence of cluster statistics to bulk

5
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Figure 5. Fractional yield of hexamers in the statistical model of
equation (26). Plotted are the yields for a single cluster system, for
hexamers in bulk and for an equivalent extrapolation to bulk for
homodimer formation.

Figure 6. The top image shows six identical particles in a volume v.
On doubling the volume, we see that only a relatively minor
concentration fluctuation is required to make the formation of two
hexamers impossible (and the formation of one hexamer more
likely), compared to the equivalent situation for dimers. As a
consequence, the broadening effect of bulk corrections increases with
the size of the target structure.

values as system size is increased. For simplicity we restrict
ourselves to a single monomer species, although the method
could be extended to multiple particle types. As in section 3,
we consider a reference system of n particles in a volume v,
where n is the size of the largest cluster, and proceed using the
partition functions zi defined in this volume.

Let {ηi} be a set of cluster sizes containing a total of Dn
particles. The statistical weight of a state with such a set of
clusters is given by:

Z{ηi } =
n∏
i

(Dzi )
ηi

ηi !(i !)ηi
, (27)

in which ηi is the number of clusters of size i in the set {ηi }.
Defining ψi (D) = zi/(zi

1 Di−1), we obtain an expression for

Figure 7. (a) Relative fractional error on the yield of various cluster
sizes as a function of 1/D in a system with a maximum cluster size
of six. All clusters show convergence with 1/D scaling in the large
D regime (as highlighted in (b)).

the fractional yield of a cluster of size c in a system of size D:

fc(D) = c
∑

{ηi } ηc
∏n

i
ψ
ηi
i

ηi !(i !)ηi

Dn
∑

{ηi }
∏n

i
ψ
ηi
i

ηi !(i !)ηi

. (28)

In all cases that we have been able to study to high D
(the meaning of ‘high’ will be clarified later), fc(D) −
fc(∞) is observed to scale as 1/D in the large D limit (see
figure 7). The question of convergence speed then reduces
to how large D must be for this scaling to hold, and the
value of fc(D) − fc(∞) at this point. In general there
are two distinct regimes of convergence, determined by the
yield of target structures. We shall illustrate these regimes
by considering completely cooperative transitions (in which
only the target cluster and monomer concentrations are non-
negligible), before commenting on the effects of other cluster
sizes.

4.1. Convergence at low yield

Section 3 indicates that simulations of a single cluster
underestimate the transition width and hence underestimate
the yield of clusters at low yield. In effect, in order to have
a high isolated monomer fraction in bulk despite the effects
of volume fluctuations, the fraction of monomers in a single
target simulation must be even higher. As the system size is
increased, concentration fluctuations tend to transfer statistical

6



J. Phys.: Condens. Matter 22 (2010) 104102 T E Ouldridge et al

Figure 8. Fractional yield of hexamers in a perfectly cooperative
model as a function of system size D for (a) low yield (5%
hexamers) and (b) high yield (95% hexamers). The ‘+’ symbols are
the calculated points and the flat line the bulk value. The curve in (a)
is a fit to a 1/D convergence.

weight from the extreme state favoured at D = 1 towards a
more balanced cluster size distribution.

At low yield this effect produces a steady increase in the
proportion of clusters with D, with the deviation from the
bulk fraction scaling as approximately 1/D from low D (see
figure 8(a)). At very low yield, initial convergence becomes
noticeably slower than 1/D—this effect increases with target
size. As a consequence, relative errors remain significant at
increasingly large values of D as the yield is decreased or the
target size increased.

4.2. Convergence at high yield

At high yield, single target simulations overestimate the
monomer fraction, for reasons similar to the underestimate at
low yield. Convergence, however, does not initially show a
1/D behaviour, as illustrated in figure 8(b). Instead, a period
of slow convergence is followed by a rapid drop to a target yield
just below the bulk value, leading eventually to an oscillation
in the vicinity of the bulk yield. These oscillations persist for
approximately n − 1 half-cycles, before settling in to a 1/D
convergence (n being the target cluster size).

These oscillations result from certain configurations
disproportionately biasing the ensemble, due to the inherently
discrete nature of a small system. At D = 1, the system
is restricted to the two states of one cluster or n monomers.
At high cluster yield, n monomers are extremely unfavourable

Figure 9. Fractional yield of hexamers in a perfectly cooperative
model as a function of n′ for (a) low yield (5% hexamers) and
(b) high yield (95% hexamers). The ‘+’ symbols are the calculated
points and the flat line the bulk value. ‘×’ symbols indicate system
sizes for which D = n/n′ is integral. The dashed line in (b) is added
as a guide to the eye.

and hence the single cluster state is overwhelmingly observed,
causing fn(1) to exceed fn(∞). As the system size is
increased, the zero monomer state continues to exert a
disproportionate influence on the ensemble, keeping fn(D)
well above fn(∞). Eventually, however, the system becomes
sufficiently large that the state with D − 1 clusters is most
favourable. Due to the discreteness of the system, this occurs
before (D − 1)/D = fn(∞). As a consequence, fn(D) is
then underestimated (or equivalently the number of monomers
is overestimated), resulting in the observed drop of fn(D).
At still larger values of D, the state with D − 1 clusters
remains most favourable but now constitutes an overestimate
of fn(D), resulting in the observed rise in fn(D). This process
is repeated for increasing number of monomers, leading to
oscillations which are eventually overwhelmed by the 1/D
convergence at large system size.

The question is then why oscillations are observed at high
but not low yield, where the discreteness of the system is still
present. To answer this, it is illuminating to allow D to take
non-integer values so that the system size n′ = Dn can take
any integer value. At high yield, figure 9(b), we see that the
system is extremely sensitive to the exact number of particles,
because if D is not an integer there are necessarily excess
monomers. This results in the rapid oscillation of fn(n′) with a
period of approximately n. Closer inspection, however, reveals
that the period is longer than n, due to the fact that states with
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no monomers present become increasingly unfavourable as D
gets larger. The region in which the fn(n′) peaks transfer from
n′mod n = 0 to n′mod n = 1 corresponds to the region in
which fn(D) drops off rapidly. By contrast, fn(n′) increases
monotonically with n′ at low yield (figure 9(a)). In this regime,
the fraction of clusters is not high enough for the value of
n′mod n to be significant, and so the general tendency to
transfer statistical weight to states with a greater mix of cluster
sizes is dominant, and smooth convergence is observed.

As a consequence of this behaviour, convergence at high
cluster yield is extremely poor until D is sufficiently large that
the state with D−1 clusters has approximately the same weight
as the state with D clusters:

(ψn)
D−1ψ1

(D − 1)!(n!)D−1n! ≈ (ψn)
D

(D)!(n!)D
. (29)

Substituting using the definition of ψi (D) gives:

Dcrossover ≈
(

zn

zn
1

)1/n

. (30)

The quantity zn/zn
1 corresponds to the ratio of cluster to

monomers at D = 1, and consequentially increases with
n at fixed bulk yield. This increase is offset by the 1/n
exponent, meaning that the value of Dcrossover is relatively
independent of target size, but increases with the target yield. It
should also be noted that the oscillations persist until a system
size of approximately nDcrossover, although they are generally
reasonably small. It is this value, D ≈ nDcrossover, that defines
the large D limit.

In the intermediate yield regime near to the midpoint of
the transition, the initial error is small and zn/zn

1 is not large,
hence convergence is fast (whether it proceeds by the first or
second method). Away from the midpoint, however, significant
relative discrepancies can persist to surprisingly large system
sizes.

4.3. Intermediate cluster sizes

An additional complication for n > 2 is the fact that
intermediate cluster sizes may be relevant to the system,
which can complicate convergence. We shall analyse the
effects of the presence of intermediate cluster sizes under
the assumption that the majority of particles are found either
as isolated monomers or in the target cluster size: for the
purposes of this section, the term ‘majority species’ applies
to the most prevalent of either the target cluster or monomers,
and ‘minority species’ to the less common of these two. Note
that our discussions will compare the effects of intermediate
cluster sizes in systems with a certain yield of the majority
species, as it is the tendency of one species to dominate in
bulk despite concentration fluctuations that causes the large
discrepancies at D = 1. Firstly, we shall consider the low yield
case. Here, the presence of clusters of intermediate sizes with
bulk yields comparable to the target cluster has little effect on
the relative error of the target yield at D = 1, which is largely
determined by the bulk fraction of monomers. By contrast, if
the relevant intermediate cluster size is small (for instance a

Figure 10. (a) Fractional yield of dodecamers in a dodecamer
forming system at low yield (90% isolated monomers, 5%
dodecamers in bulk). (b) Fractional yield of isolated monomers in a
dodecamer forming system at high yield (90% dodecamers, 5%
monomers in bulk). Plotted are points for systems in which the other
5% is assumed to consist entirely of either 2-mers or 11-mers. Also
shown (dashed curves) are the results for completely cooperative
systems with the same 90% majority species yield. These have been
scaled by a factor of 0.5 so that the relative errors can be directly
compared.

dimer in a system forming a dodecahedron), the relative error
between dimer and isolated monomers is comparatively small,
meaning that f2(1) ≈ f2(∞), because from the perspective
of the monomer/dimer equilibrium the system has an effective
size of Deff = n/2. As a consequence, states including dimers
are common and so the entropic penalty associated with having
no target clusters is reduced, meaning that statistical weight is
transferred to larger clusters more slowly as the system size is
increased. The effect manifests itself as a poor convergence
in the first few steps, as shown in figure 10(a). Also shown is
the effect of having a significant presence of large intermediate
clusters, which is smaller as they do not relieve the entropic
penalty of having many monomers as swiftly as dimers do
(the relative error is seen to behave similarly to a completely
cooperative system with the same monomer yield).

We now consider the effect of significant presence of
intermediate clusters on the convergence of the yield of
isolated monomers at high cluster fraction. If the relevant
intermediate clusters are large, the initial error is significantly
reduced as the relative error between two large clusters
of similar size is much smaller than for a large cluster
and a monomer, and in forming intermediate clusters some
monomers are ‘spare’. Convergence, however, is not improved

8
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Figure 11. Fractional number of particles in each cluster size at the
CMC for the statistical micelle model used in the text. Here we
define the CMC as the point at which half of all particles are in
clusters larger than one (thus the fraction of monomers is 0.5).

as instead of the state with D − 1 target clusters and
D monomers coming to dominate the ensemble, as in the
completely cooperative case, states containing intermediate
clusters become most prevalent (in effect, they reduce the
‘entropy cost’ associated with having few monomers in the
system). If the intermediate clusters are large, there will be
few monomers in these states and as a consequence, statistical
weight is transferred to isolated monomers more slowly. This
effect is illustrated in figure 10(b): also plotted is a case
with a significant presence of small intermediate clusters. In
this case convergence is not dramatically slowed (relative to
a completely cooperative system with the same target cluster
yield), as the states which become prevalent contain D − 1
target clusters and a mix of smaller species, including several
monomers.

In summary, for monodisperse clusters, the significant
presence of intermediate cluster sizes tends to reduce the
rate of convergence of the fractional yield of the minority
species relative to a completely cooperative system (at a fixed
yield of the majority species), particularly if the relevant
intermediate clusters are closer in size to the majority species,
by reducing the entropic penalty associated with having few of
the minority species in the system. In several cases, authors
have studied systems capable of forming approximately 10–20
clusters [26, 29, 46]. It is probable that the finite-size effects
illustrated here are relevant to these systems in the regimes
dominated by one cluster size.

4.4. Polydisperse large homoclusters

In previous sections we have focused on monodisperse
clusters, in which we have assumed that the majority of
particles are either isolated monomers or in clusters of a
certain size. We now consider self-assembly of structures
which, although characteristically finite, have a much larger
range of sizes. In particular, many simulations have studied
the formation of spherical micelles from surfactants in the
canonical ensemble [33–36]. We apply the theory developed
earlier to estimate finite-size statistical corrections for a model
system whose bulk distribution is reasonably reflective of

Figure 12. (a) Fractional yield of micelles of size 20 in the low yield
case (when approximately 10% of particles are in micelles).
(b) Fractional yield of isolated monomers in the regime where yield
of micelles is high (90%). The ‘+’ symbols are the calculated points
and the flat line the bulk value.

models in the literature. For the purposes of this investigation,
we specify a cluster size distribution (in the bulk limit) at the
critical micelle concentration (CMC), as shown in figure 11,
from which we infer zi(CMC). Assuming all other factors are
held constant, we then adjust the total concentration, adjusting
zi accordingly, and observe the convergence of cluster yields
on bulk values.

Figure 12(a) shows the convergence of a typical micellar
cluster (20-mers) to its bulk yield, at a concentration at which
approximately 10% of particles are in micelles. In this case
there is no single target structure size, so we plot the yield
as a function of n′. In this regime of low target yield, the
behaviour is very similar to that of monodisperse structures,
with the fraction of 20-mers eventually converging toward the
bulk value (with a limiting form of 1/n′). At this concentration,
the second most populated cluster is a dimer, and hence the
initial convergence of the 20-mers is slowed as discussed in
the previous section—even at a system size capable of forming
four micelles, the fraction is less than half of its bulk value.

Figure 12(b) displays the convergence of isolated
monomer fraction at a concentration when approximately 90%
of particles are in micellar structures. Although a large
majority of the particles in the polydisperse system are in
micellar structures, the polydispersity reduces the strength of
the oscillations (note: these are oscillations in fi (n′), the
equivalent of those shown in figure 9(b), not the gentler
oscillations in fi (D) as exemplified in figure 8(b)) as each
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different micelle size tends to oscillate out of phase. In
addition, the large variety of micellar sizes means that no single
cluster has a large fractional yield, meaning that the initial
corrections are considerably smaller than in the monodisperse
case. As a result, convergence is more successful for
polydisperse than monodisperse clusters at high yield.

For micelles, therefore, errors are most likely to be
significant at concentrations slightly below the critical micelle
concentration, particularly when dimers are the second most
common aggregate. Our model suggests that these errors
may persist for systems containing several times the typical
aggregation number of monomers, as large as some simulated
systems [33–36], possibly affecting the details of cluster size
distributions.

5. Conclusions

For systems that self-assemble into finite-sized objects we have
demonstrated that deviations from bulk statistics arise due to
neglected concentration fluctuations in small simulations in
the canonical ensemble, and devised a method for estimating
and correcting them under the assumption that species behave
ideally. As simulation size is increased, fractional yields are
found to converge in qualitatively different ways depending on
the type of cluster which is most prevalent in the system: in
general converging in a smoother fashion at low target structure
yield, and oscillating at high yield. We also find that the
discrepancies increase with distance from the midpoint of the
transition.

This study has highlighted a particular reason to be
wary of statistical finite-size effects. As the convergence of
abundances to their bulk values is strongly dependent on the
yield of clusters, it is not sufficient to estimate finite-size effects
at one set of conditions and assume they apply at another—all
regimes of interest must be checked.

In answer to our original question of how best to compute
the thermodynamics of systems that self-assemble into finite-
sized objects, where possible, we recommend performing
simulations in the grand canonical ensemble (where the correct
concentration fluctuations are naturally generated) or using
a system large enough for the errors associated with the
canonical ensemble (as estimated by our prescription) to
be negligible. However, such an approach requires that
the reversible formation of multiple assembled structures
is feasible on the available computational timescales. For
instances where this is not the case due to the large free energy
barriers associated with assembly, an efficient alternative is
to utilize a rare-event method such as umbrella sampling to
simulate the assembly of a single target in the canonical
ensemble, and then to apply the corrections outlined in the
current paper to obtain the bulk yield. If feasible, the
simultaneous formation of two or more clusters should also be
simulated, in order to ensure that the approximations of ideality
hold. For example, this is the approach we have taken for the
numerous melting point calculations that were required in the
development and testing of our recent coarse-grained model for
DNA [24].
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